Главная страница » 147 5 корней из 21 в квадрате? 147 5 корней из 21 в квадрате? Автор Hardees На чтение мин Просмотров 80 Опубликовано 21.11.2023
Чтобы решить данную задачу, мы будем использовать метод факторизации и свойства корней. Дано уравнение:
147 * ?21 = x^2
Для начала, давайте разложим число 147 на простые множители:
147 = 3 * 49
Теперь разложим число 49:
49 = 7 * 7
Теперь мы можем переписать исходное уравнение следующим образом:
147 * ?21 = (3 * 7 * 7) * ?21
Так как корень квадратный (?) можно записать в виде степени 1/2, упростим уравнение:
(3 * 7 * 7) * ?21 = (3 * 7 * 7) * (21)^(1/2)
Теперь применим свойство корней, которое гласит: ?(a * b) = ?a * ?b
(3 * 7 * 7) * (21)^(1/2) = (3 * 7 * 7 * 21)^(1/2)
Упрощая уравнение, получаем:
(3 * 7 * 7 * 21)^(1/2) = (3 * 7 * 7 * 21)^(1/2)
Таким образом, мы получаем, что корень из 147 * корень из 21 в квадрате равен корню из 3 * 7 * 7 * 21 в квадрате.
Поэтому, корень из 147 * корень из 21 в квадрате равен 3 * 7 * 7 * 21, или в другой форме записи, 1029.